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ECG-Based Detection of Body Position
Changes in Ischemia Monitoring

José Garcia*, Magnus Astrom, Javier Mendive, Pablo Laguna, and Leif Sphdemober, IEEE

Abstract—The purpose of this paper is to analyze and detect 15
changes in body position (BPC) during electrocardiogram (ECG)
recording. These changes are often manifested as shifts in the
electrical axis and may be misclassified as ischemic changes during &
ambulatory monitoring. We investigate two ECG signal processing
methods for detecting BPCs. Different schemes for feature ex-
traction are used (spatial and scalar), while preprocessing, trend
postprocessing and detection are identical. The spatial approach supine right lateral left lateral
is based on VCG loop rotation angles and the scalar approach is N
based on the Karhunen-Loeéve transform (KLT) coefficients. The _. . . .
methods are evaluated on two different databases: a database with F'9: 1. Beat morphologies for three positions recorded in lead X from the same

. . individual. The differences found in ST segment level and T wave amplitude
annotated BF_)CS and_the STA_FF I dat_abase V_V'th record'_ngs fr(_)m between right and left lateral positions are of;88 and 4051V, respectively.
rest and during angioplasty-induced ischemia but not including
BPCs. The angle-based detector results in performance values
of detection probabilty Pp = 95%, false alarm probability changes (BPC), drug effects, resting potential conditions, etc.
Prp = 3% in the BPC database and false alarm rate in the BPCs effects on the ECG are manifested as transient changes
STAFF Ill database in control ECGs during rest Rp(c) = 2h™  gnq glso as ECG waveform variations that remain while the

episodes per hour) and in ischemia recordings during angioplast . C .
g%i(a) :p 7 h—l)’ whereas the KLT-base% detectgor pgroguce: new body position is maintained [1], [2]. It is well-known that

values of Pp = 89%, Pr = 3%, Rr(c) = 4 h~', and BPCs are often misclassified by monitoring equipment used in

1

Amp.

Rp(a) = 11 h™*, respectively. Including information on noise the intensive care unit resulting in false ischemia alarms. At
level in the detection process to reduce the number of false alargns, present, software is rarely included in such devices to cancel
performance values ofPp ~ 90%, Pr ~ 1%, Rr(c) ~ 1h™"  the false alarms or, at least, to inform the physician that the

and Rr(a) ~ 2 h™' are obtained with both methods. It is _—
concluded that reliable detection of BPCs may be achieved using observed event is likely due to a BPC and not related to an

the ECG signal and should work in parallel to ischemia detectors. 1SChemic episode. The large morphologic changes caused by
changes from one body position to another are shown in Fig. 1.

' In this example, the differences in ST segment level and T wave
amplitude between right and left lateral positions, are of.83
and 405uV, respectively.
|. INTRODUCTION Previous work concerning BPC is descriptive in nature
YOCARDIAL ischemia is usually detected in the syrand presents results on how various ECG measurements are

face electrocardiogram (ECG) from the repolarizatiofiffected by changes in body position; methodological devel-

period (ST-T complex). Ischemia may be detected from afpment regarding the BPC detection probl_em is lacking. In
normal amplitudes change measured from the ST-T compl&].' the,standard 12-lead ECG and the derived 12-lead ECG
However, changes in the ST segment or ST-T complex are hgPWer's EASI lead system) are compared studying QRS and

always due to ischemia, but to other factors as body positi§rT variations for different positional changes. It was concluded
that such changes affect all ECG measurements although those

related to QRS morphology are more sensitive. Further, the
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TABLE |
VARIATION IN STg¢ LEVEL (it + o IN V) FOR THE PRECORDIAL LEADS INDUCED BY BODY POSITION CHANGES. THE LARGEST CHANGE FOUND
(AND THE CORRESPONDINGLEAD) FOR EACH KIND OF POSITIONAL CHANGE IS ALSO SHOWN (MAX)

BPC V1 Ve V3 V4 Vs 10 Maz

S—R  32+28 -38+30 -T4£32 8+19 07 0+6 -126 (V2)
R—S -33x27  33£27 7+26 -6+21 246 35 -117 (V4)
S—L -13+15 -44+41 14450 34426  18+22 8+13  -177 (V3)
L—S 12414 51438 -10+41 -294+23 -16+21 -8+13 4188 (V2)

TABLE I
VARIATION IN T WAVE AMPLITUDE (¢t & o IN V) FOR THE PRECORDIAL LEADS INDUCED BY BODY POSITION CHANGES. THE LARGEST CHANGE FOUND
(AND THE CORRESPONDINGLEAD) FOR EACH KIND OF POSITIONAL CHANGE IS ALSO SHOWN (MAX)

BPC Vi V2 Vs V4 Vs ) Maz

S—R 119491  -97+£106  -65+£94  -15+76 -38+48 -30£29 4398 (V2)
R—S -115487 81198 46181 5+69 22440 19425 -400 (V1)
S—L -58+71 -186+160 -71+132 78+160  194+137 160+83 +686 (V5)
L—S§ 51463 199+141  90+115  -524+148 -166+127 -139+82 +597 (V1)

monitoring were studied. They analyzed these sources of E@&ween the changes (1 min) was chosen in order to allow mus-
variations to correct them by reconstructing the signals. cular activity and other artifacts to decay before the next BPC
One of the first papers published on the BPC detectiovas initiated. Twenty healthy individuals were included in the
problem was by Jager and coworkers who explored the useBRC database (11 males/9 females;t3®years old).
Karhunen-Loéve transform (KLT) for detection of ischemic In order to establish the characteristics of the BPC database,
ST changes and nonischemic episodes due to, e.g., badyummary of its properties is presented in Tables | and Il. The
position changes [5]. They developed a recognition algorithimfluence of BPCs on the cardiac cycle was analyzed, looking
that studied the feature vectors evolution in the KLT space fat changes induced {75, level and T wave amplitude, which
both the ST segment and the QRS complex. Their hypothesiay yield false ischemia detections. T#&, level and T wave
was that during axis shifts the QRS parameters change rapidipplitude were estimated with reference to the isoelectric level,
(generally over a period of half a minute) generating more thaluring the time intervals without BPCs (excluding beats from 5
one cluster but not during ST episodes in which case the QR®efore each BPC until 10 s after). One average was obtained
complexes do not show significant changes. Analysing tlier each resting phase. Then all BPCs were characterized lead-
pattern of QRS and ST parameters changes, they were ablavige by the difference between two consecutive mean values of
distinguish between ischemic and nonischemic episodes in #$1&;, level and T wave amplitude. In Tables | and Il, the main
European ST-T Database [6]. results of variations (average values for all the BPCs in all the
In this paper, we compare two different approaches to tpatients), classified by the different pattern of changes{ R:
BPC detection problem (spatial approach (VCG) and scakupine to right sidel, — S: left side to supine and so on), are
approach (KLT)). Both methods are tested on two differepresented, showing a significantincrease/decreaS&gflevel
databases, described in Section Il. The two methods, thed T wave amplitude values provoked by the BPCs. One result
preprocessing and the detection scheme are explainedoirthis study was that BPCs were usually larger when related to
Section Ill. Finally, the results and discussion are presentedtire left-lying body position, in accordance with [3]. Batig,

Section IV and Section V, respectively. level and T wave amplitude were affected by BPCs with large
variance between individuals. It was possible to fifit, level
Il. REFERENCEMATERIAL deviations of up to 18@V and of more than 60pV for T wave
amplitude.

The evaluation of a BPC detector needs to be done with ref-r:q preliminary analysis shows clearly that BPCs can in-

erence to different aspects since it will work in parallel to ag .o significant changes, sometimes of the same order as the
ischemia detector. First, it is necessary to evaluate the ability,ffashold in an ischemia detection system (ischemic episodes
the system to detect BPCs and second, whether or not it cafs commonly defined as deviations of more than AB0for

fuses BPCs with ischemic episodes. Therefore, two databaﬁfess-r segment level or 200/ for the T wave amplitude [6]).
were c;onS|dered with standard 12—I¢ad ECGs rgcorded W'trﬁJging these thresholds in an ischemia detector, 43% of the an-
sampling rate of 1 kHz and an amplitude resolution of @6 \nt4ted BPCs would be considered as ischemic changes mostly
(equipment by Siemens-Elema AB, Solna, Sweden). due to erroneous detections derived from the T wave.

A. Healthy Individuals Doing BPCs—BPC Database B. Patients Undergoing PTCA—Staff Il Database

The BPC database was recorded following the next protocol:The second database contains severe, induced ischemic
supine—right side—supine—Ileft side and so on. The completgents. The study group consisted of 83 patients (55 males/28
sequence was repeated five times with a duration of 1 min gemales, 61 12 years old) receiving electivpercutaneous
BPC in order to give more reliable statistical results. The intervitnsluminal coronary angioplast§PTCA), i.e., a balloon was
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Fig. 2. General scheme for BPC detection. One of the two methods (either VCG angle or KLT series) can be selected.

inflated, blocking the blood flow in one of the major coronaryifferent recordings may have different SNR levels. In order to

arteries. A control ECG recorded during rest prior to thsolve that, an exponentially updated SNR threshold is used so
procedure and the ECG recorded during angioplasty (from tthet it is possible to eliminate noisy beats for a shorter period of
beginning of the recording until PTCA ended) were considergitne and to maintain the ability to detect body position changes
for each patient. In this paper, the recordings obtained duriaglow SNRs. Consecutive beats with baseline isoelectric levels
control and angioplasty are denoted with subscriptand differing in more than 0.6 mV are also discarded.

a, respectively. A more extensive description of the STAFF

[l database is found in [7], [8]. It is assumed that no BPCB. Spatial Approach Based on VCG Angle Series

occurred durir_1g the recording_of this data (highly unlikely that The method is based on the observation that a BPC causes a
any of the patients moved during surgery). change in the position of the heart and, as a result, the ECG/VCG
morphology is altered. One way to quantify such morphologic
Il. M ETHODS alterations is to estimate the relative rotation angles of succes-

The BPC detector mainly consists of feature extraction for. Ve VCG loops and then to search for angle signatures which

lowed by decision making. The following two different featuré © chara}cter_lst|c of BP.CS' The maximum likelihood a_pproac.h
extraction methods have been compared: to the estimation of rotation angles, recently presented in [12], is

. , briefly summarized below. The estimation is based on a model
* a spatial approach based on loop rotation angles; in which the observed VCG loop for a bet,is related through
* ascalar approach based on the KLT coefficients. rotation, defined by the matriQ, plus alignment handled by the
Both approaches make use of identical preprocessing ajiit matrixJ . and scaling by the amplitude factoy to a “ref-

postprocessing and detection scheme, see Fig. 2. In parallejténce” loopZ ;; and corrupted by white, zero-mean Gaussian
the above algorithms, an extra stage including information @gise

noise levelin the detection process to reduce the number of false
alarms was added. Z=aQZrJ. + W. (1)

A. Preprocessing The loopsZ andZ i are represented by matrices, defined by the

The preprocessing of the recorded ECG signal consists of {HEe€ 1eadsy, ¥ andZ and the number of samples embracing
following stages: baseline filtering, synthesis of vectorcardid® QRS complex. The rotation matdis a 3x 3 orthonormal
graphic (VCG) leads, QRS detection and rejection of beats wililrix- The problem of selecting the reference Ibp is ad-
low signal-to-noise ratio (SNR). The synthesized VCG signafééssed in [12]. o o
are obtained from the standard 12-lead ECG using the inversd "€ maximum likelihood criterion for estimating leads

Dower matrix [9]. The baseline wander is removed by usint@ that the Frobenius norm between the original and estimated

a time varying linear high-pass filter (third-order Butterworth)°0PS should be minimized with respect @. From the re-
glting estimateQ, the rotation angles defining the three dif-

with a normalized cutoff frequency depending on the heart rat .
beat frequency [10]. The QRS detection is based on an envel €Nt planar rotations are calculated by
signal of the ECG and the decision rule is applied to it by using

a multistage process [11]. @y = arCSin((ila)A (2)
Bea'ts with poor signal quality, e.g, due to myoelgctric noi;g, . = arcsin ( Q12; ) 3)
are rejected since these otherwise would result in unrealistic Cos Yy

trend fluctuations. The problem of removing low SNR beats is A . 23 4
complicated by the fact that different body positions as well as Pz =arcsin cos Py )
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Fig. 3. Example of rotation angle estimates. The instants of the BPCs are denoted\with “

whgreqmn denotes the element of theth row andnth column  with ai(ti) being thekth-order KLT coefficient at; estimated

of Q. The estimation procedure is then repeated for each néw jth lead beat. They (¢;) coefficient series is estimated using

successive loop of the VCG recording. adaptive filtering to remove noise uncorrelated to the signal,
An example of the three angle serigg, ¢y, andgy is pre- thus improving the KLT estimation [14]. A compromise be-

sented in Fig. 3 for a subject included in the BPC database.tifeen noise reduction and convergence time is reached using

this example, changes in the angle series occur every mingtstep-sizeparameter for the LMS algorithm of = 0.25, that

corresponding to the time instants of a BPC. yields a SNR improvement in the series of more than 6 dB, with

a convergence time of one beat [14].
C. Scalar Approach Based on Karhunen—Loéve Coefficients 1 1€ 7 (t:) function reflects, in a combined way, changes in
QRS and ST-T complexes. Although the largest changes during

The KLT technique applied to different waves of the EC®PCs are usually related to the QRS complex it is also desirable

signal provides a useful tool to estimate their morphologio keep the information of possible changes on the ST-T com-

changes. The KLT is an orthogonal linear transform, optimplex; therefore, values ofgrs = 0.8 andAstt = 0.2 were ex-

in the sense that it concentrates the signal information in a f@wrimentally selected as weights. An example of the first KLT

coefficients [13]. The dynamic beat-to-beat evolution of theoefficient series for both QRS and ST-T complexes in &ad

signal can be characterized by the coefficient time series. In tig)) is shown in Fig. 4 (corresponding to the same patient as

paper, the KLT has been applied to the QRS complex and tipgrig. 3). The corresponding KLT distance trend is represented

entire ST-T complex in order to analyze how BPCs affect tha Fig. 5.

ECG signal. The details on how this transform was developed

and applied to the ECG segments are described in [14], [15]D. Postprocessing

_Inthis paper, both the QRS and the ST-T complexes are conpypee the rotation angles and KLT trends are obtained, post-
sidered for the detection of body position changes. A combingf,-essing is applied to reject outlier values and to resample
distance function of the corresponding KLT time series for QRRem at equidistant sample times. A simple but effective method
and ST-T is defined as for outlier rejection is themedian absolute deviatioMAD)

method [16]. The idea of this method is to focus on the median
F (ti;) = Aqrs - fqmrs (ti) + Astr - fsrr (4:) (5) and the median absolute deviation instead of the more com-
monly used mean and standard deviation. This method is ap-
whereAqrs, Astr represent the weights for the functions anglied to the trends to avoid false BPC detections. An example of
faors(t:), fsTr(t;) are the distance functions for each compleshe rejection method applied to the KLT distance trend is shown
at timet;. These functions are simply the distance series big-Fig. 5. The outliers are likely to produce false BPC detections,
tween each KLT coefficients vector (in which only the first fouhowever, the rejection method eliminates this risk. The outliers
components are considered) and a mean reference vales-( are usually due to a sudden drop in SNR.
timated from the onset of the recording Finally, the trends are resampled to an even sampling rate.
The procedure of resampling is based on linear interpolation.
3 ) 1/2 This method is chosen since the introduced delay is minimal
f(t) = Z <Z (ai (t:) — ai(r)) ) (6) and thatitis a computationally fast method. The sampling rate
after resampling i§s = 2 Hz.
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Fig. 4. Example of KLT coefficients for QRS and ST-T complexes (expressed in arbitrary units). The instants of the BPCs are dendi€d with “
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Fig. 5. An example of outlier rejection based on median absolute deviation applied to the KLT distance series: Original trend (thin line) atveittéteidk
line).

E. Bayesian Detection of BPCs 6 is assumed to have a unifompriori probability density func-

A simple statistical model of the basic trend characteristié@n (Pdf) such that

p(n) is considered with the aim to determine if a BPC has oc- 1
p(e)_{ﬁ, 9:0,...7D_1

curred (hypothesi{;), or if only noise is present (hypothesis .
(hyp ) y P (hyp 0, otherwise.

Ho); this aim is later extended to also handle the detection of
renrlejlr?géetc?;isér-:—t}i g}iﬂzl t\iNn?: ggnggﬁg \i/:t:oulges dpzclllj;”r e/%_OBPC is manifested ip(n) as a transition from a lower to a
9 bp d yh|gher level with equal probability as a transition from a higher

trends of KLT coefficients and rotation angles. The onset of the ; L
L. s 2 {0 alower level. Therefore, the amplitudgis in each lead char-
observation interval occurs at the sliding time instast ng. A

BPC is characterized by the signatufe:) which is disturbed acterized by a "two-pointa priori pdf

9)

by additive noisew(n) with mean valuen, 1 g =g
pan={5 02, 10)
2 W= "0
Hi:p(n) =as(n—ng—0)+w(n)
Ho : p(n) =w(n) (1) wherea) is a positive-valued constant representing the magni-
tude of the BPC. Hence, the magnitude of a transition iritthe
where n. = ng,...,ng + M — 1 and ¢(n) = lead has a fixed size equal ta2 The eight possible combi-

[p1(n) @a2(n) @a(n)]", w(n) and a are 3x 1 vectors nations of the amplitudes that can occur are denoted by the
representing information related to each of the orthogorgdt(),. The additive noisaw(n) is assumed to be white and
leads. For simplicity, it is assumed thatn) is modeled by Gaussian with meam, and variance?2, . All random variables

a step change, in §, a andw(n) are assumed to be mutually independent.
. b A Bayesian approach is considered for developing a BPC de-
75 n=0,....,5 -1 tector and takes its starting point in the binary detection problem

s(n) = _%7 n=2_....D-1 (8) with random, unwanted parameters, i&.anda [17], [18].

0, otherwise The two hypotheses are characterized by the pds(ng) |

¢,a,’H;), describing that a BPC has occurred ani@(ng) |
where length ofs(n) is defined by the even-valued integbr  H,), describing that nothing has changed; the ma#{x) =
The length)M is chosen such thatn) is completely contained [¢(no) ... @(no + M — 1)]" contains all observations of the
in the observation interval. The discrete-valued occurrence tirhgee leads. The Bayesian detector requires that the likelihood
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ratio is tested againstthresholdsuch that the hypothesi¢; is TABLE Il
decided if TIME DELAYS ASSOCIATED WITH DIFFERENT
PROCESSINGSTEPS OF THEBPC DETECTOR
defp (® (no) | H1)
A(®(no) = —— 773 Algorithm part Introduced delay
P(® (no) | Ho) VCG angle series / KLT distance trends ~0/1s
a %:p(‘I’ (no) | 0,2,H1) p(6,a) SNR beat rejection 0s
=— (@ (n0) | Ho) > threshold MAD beat rejection 5s
p 0 0 Trend resampling 0s
(11) Detector 0-75s
Total <125s /135 s

where the two sums are introduced due to that the randc
variablesd anda are discrete-valued. Tharesholdis usually
treated as a design parameter and selected such that a cegiaifyetection Delay

performance is achieved, e.g., in terms of false alarm rate. The ) )
The delay introduced by the different steps of the detector

detector given in (11) is rather demanding computational%g1 - . ;
and, therefore, a simplified detector based on the Taylor ser stitutes an important factor to know, in order to make the

expansion is derived (the derivation is presented in [19]). ABPC detector to work properly together with the ischemia de-
suming that the three leads have identical statistical propertifictor- A delay of 10-15 s may be an acceptable limit value

the simplified detector is defined by the sum of the energy 81 the BPC detector in order to not reduce the performance of
the matched filter outpuy(no + 6) of all leads and yields the ischemia detector. The different parts of the algorithm in-

the following test against a threshaojdrelated to the previous troducg variou; delay_s,_ See _Table 1. The_ delay caused by the
threshold[19] loop alignment is negligible since each estimate is calculated on

a beat-by-beat basis. The delay introduced in the KLT method

D-1 3 ) is less than 1 s (considering the convergence time of the adap-
Z Y (no+0) 2. (12)  tive algorithm). The SNR rejection operates on a beat series and
=0 I=1 does notintroduce any delay. For the MAD rejection method itis

In order to accomplish detection of multiple BPCs, the d&ecessary to introduce a delay to calculate the median absolute
tection test is repeated for successive values,aintil the en- deviation (approximately of 5 s). Resampling of the trends is
tire signal has been processed. Hence, the detector perforni®@ae with a linear interpolation filter which introduces a negli-
“sliding” hypothesis test to find out whether a BPC has occurrdtible delay. The matched filter in the detector introduces a delay
or not. of maximum 5 s. However, the matched filter and the remaining

Two other modifications are introduced in the detector struparts of the detector work in parallel, causing the detector delay
ture in order to improve performance. First, a nonlinearity ¥ vary from 0 to 7.5 s, depending on how large response from
inserted after the matched filter in order to zero out any samgfe trends the matched filter yields.
values below a certain thresholtj samples exceeding are
unaffected. The purpose of this nonlinearity is to reduce the IV. RESULTS

number of false detections due to noise. Second, a “refractornyaiector performance is assessed by measures which are
period” disqualifies detections que.wnhlr? asmall time intervgfaahase specific. Due to the differing characteristics of the two
following the most recent detection; the time period is chosepyahases, different performance measures are considered. For

to 10 s. The inclusion of such a period reduces the risk that e, Bpc database, the classical detection measures used e.g.,
onset and end of a single BPC is detected as two separate eV?BFSassessing communication systerdstection probability

Pp andfalse alarm probability Pr, are consideréd These
measures can be defined in terms of the numberuef detec-
An extra postprocessing stage was considered after analysio@s (N ), false alarmg Nr), andmissed detections\ys)
the results, which can be added to the detection scheme (Fig. 2).

F. Noise Stage

The idea consists of making use of the information contained in Pp :L (23)
the noisy beats which are rejected from the study. From the anal- NT];I; Nu
ysis of BPC recordings, it was found that one may generalize Pr - F (14)
that a BPC episode implies a few noisy beats around its posi- Nr + N

tion (a noisy beat is a low SNR beat or a beat with high baselineA different measure is used when evaluating the STAFF 1lI
wandering as defined in the preprocessing). We use the revatatabase. Since this database does not contain any BPCs, the
(negative) implication to reject potential false BPC detectionsformation is described by thalse alarm rate Ry, which is

in the next way: no noisy beats found imply no BPC presemiresented as the number of false BPCs per hour.

or at least, no need to detect a BPC (because the BPC wouldhe performances of the two methods (without and with ap-
probably induce small ECG changes). To apply this rule it is relication of the extra noise stage) are shown in Table IV. The
quired that a potential BPC at the Bayesian detector output m\&G angles presented slightly higher performance results than

present a minimum number of noisy beats in the neighborhood o _ _ _
fi isv beats present in the surroundina 20 beats interv The notation in (13) and (14) is essentially the same as the ones used in some
(five noisy beats p g her studies i.esensitivity S andpositive predictivity P+ [20]. The relation

to be considered as a BPC event. between the two sets B, = S andPr = 1 — P+, respectively.
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PERFORMANCE STATISTICS (¢t & 0) FOR THEBTSCB:IEEETI;ZTORS ON THEBPCAND STAFF IIl DATABASES
BPC | STAFF III
Detector Pp(uxo) | Pr(uto) | Rp(c) (uto) | Rp(a) (uto)
VCG angle series 95 % +7 3% +5 2 h~ T +6 7h T £14
KLT distance trends 89 % +13 3% +4 4 h7l +13 11 A1 +14
VCG + noise stage 92 % +9 1% +2 1h T +4 3h7 T 19
KLT + noise stage 90 % +11 1% +3 1h 143 2 h~ T &7
. @ . () needs to be achieved. THe, parameter reflects true BPCs
missed by the BPC detector and, therefore, how many false is-
09 09 chemic alarms will be activated by the BPCs during monitoring.
08 08 Itis also important to minimiz&x in order to avoid cancellation
€ € of events during monitoring due to sources different from BPCs.
o7 o Finally, the R;- parameter needs to be as low as possible (espe-
06 06 cially in angioplasty recordings?r(a)) because an ischemic
event confused as a BPC would be ignored and the ischemia
% 005 01 *% 005 01 alarm would be cancelled. From the perspective of signal pro-

Py Pr

cessing and BPC detection the goal is to get hitghand low
Fig. 6. ROC graphs for the VCG angle series (a) and KLT coefficients s Values. However, from the clinical perspective, it should be
(b) varyingn with a fixed 3 amplitude, on the BPC database. more important to decreader (mainly Rr(a)), thus avoiding
that a true ischemic episode could be cancelled. Therefore, fu-
did the KLT distance, especially regarding detection probabili re research should be addressed mainly on these aspects 1o
1e the parameters detector.

on the BPC database and false alarm rate on the STAFF Il da ithouah the | i t perf d sliahtly bett th
base. When the extra noise stage is applied both methods:\(i%éﬁ ough the foop alignment performed slightly better on the

similar performances. In general, for both methods (in the tabases, the difference is so marginal that it can be concluded

presented versions, i.e., considering the extra noise stage ornt @t the two, distinctly different, approaches lead to the same

Py values are small{{ 3%). The obtainedPp, values are also result. The KLT method includes more information from the
quite high, ranging from 89% to 95%. Finallg, values range ECG (considering both QRS and ST-T complexes). However,
from 2 toyll h—! and from 1 to3 h—! when the extra noise in practice, results show that maybe KLT series are affected in a

stage is considered. The false alarm rate in angioplasty—indué%r&‘ger time period by each BPC as a consequence of using both

ischemia recordings2 - (a), is approximately three times thatcomplexes and the adaptive estimation. Introducing in parallel
: ' - the noise criterion stage both methods work essentially equal.

of the control recordin . The standard deviation of the . .
957r (¢) Qne aspect that should not be forgotten is that in the STAFF

methods is relatively large between subjects as it can be deduma Jatabase recordings the induced ischemia comes from a

from the results. ; ;
The receiver operating characteristicROC) constitute a sudden occlusion and, therefore, changes take place in a shorter
iod of time than during a common transient ischemic event

common approach to present detector performance. The R . . :
PP P P and they probably also have greater ischemic magnitude.

display the relationship betweeRp and Pr for different ) . . .
values of a certain detector parameter. The ROC of the BETE'S means that the time and amplitude signature for these

database were calculated choosing as parameter for evaluaﬁ%ﬁ'em'c evgn_ts 'S more _Ilkely to thf”u of BPCs and thus more
that judged as the most critical for performangethreshold. ! 'CUIF to d|st|ngU|sh.. Itis also poﬂcegble that eagh STA'.:F
In Fig. 6(a) and (b), the ROC curves for the VCG angles Seriggangloplas_ty recordingd recordmgs) '”C'“d?s one ischemic
and KLT trends, respectively, are plotted for different valueeéDISOOIe which lasts around 5 min, thus leading in a STAFF lil

of n, starting with the largest parameter value in the lower Ie'f?cordmg to 12 events per hour, a rate that is much higher than

corner. These curves were calculated for both detectors withgﬂﬁt usually expected in a_lmbulatory reco_rdmgs. T his re_asqnlng
Ids thatRr results during ambulatory ischemia monitoring

the extra noise stage. Similar curves are obtained when thi§
stage is applied. In order to investigate the STAFF Il databa ct)t_PTé:A EQGS) \i/(voulr(]i_ Erobabkl)y bel I?W?r Lha;: the o_ges
(control and angioplasty recordings), thparameter was again0 ained in this work, which can be relatively high (consider

considered and the results are presented in terms of false aIHﬁLRTD(_?éA:_Z’ ;’]V'th_lz e_ver(ljts per hOl.Jr’ lmea_?_séhat gr;eésmth
rate, Rp, in Fig. 7. It can be seen that ther parameter is otthe ISchemic episodes are misciassilied as ).

less sensitive to variations in the detector parameter in Cont{s?clc;g:ngoduegezznsrsb\?vﬁ?\ tF;IreeV;?rl:]Sg gg’;g’sd delz?eé?iinStsuc?;rﬁfes
recordings than in angioplasty recording® . _ ;
Ings {ir (c)) ! glopiasty Ing&k(a)) which consider global or morphology changes on the ECG

complexes under different approaches [21], [22]. We tested

the proposed ischemia detector based on the root mean square
Several parameters control the performance of the propog&MS) difference series of ECG intervals [22] on the BPC

methods to detect BPCs. A tradeoff amoRg, Pr, and Rr  database. The false detections for ST-T complex obtained with

V. DiscussiON ANDCONCLUSION
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Fig. 7. VCG angle series (a) and KLT trends (b) performance on the STAFF Ill data®ase) (solid line) andR »(c) (dashed line) are plotted varying

this ischemia detector are less than 2% of total BPCs, thugs]
making it less necessary the use of a BPC detector working in
parallel with it. However, by using classical ischemia detectors
the false alarm rate is much higher (43%) as it has been showis]
in the description of the BPC database and the application of
a BPC detector would be very useful. A third approach to the
BPC detection problem could be to use the RMS series as inpuf]
information to characterize BPCs (in the same way as KLT or
VCG angle trends). Thus, the same scheme could be used both
for ischemia and BPC detection. However the results obtaineds]
are a bit less satisfactory than with the two presented methods:

Pp =

88%, Pr = 6%, Rp(c) = 2h™', andRp(a) = 3h™*

(obtained using the extra noise stage). An explanation to the
fact that KLT trends obtain better results than RMS series[®]
in BPC detection but worse in ischemia detection may come
from the SNR trend values. In general, KLT trends are muchu10]
cleaner than RMS series (first KLT coefficients recover main
signal features filtering high frequency noise content) and RM%M]
series, especially during a BPC, present a high noise content.
Then many beats can be rejected from the RMS series, makirﬂ%]
it difficult to detect the corresponding BPC.

An interesting extension of this work would be the test of the
proposed methods in a database simultaneously containing bd#3!
ischemia events and BPCs. The collection of such a database is

however associated with considerable efforts and costs.
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