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ECG-Based Detection of Body Position
Changes in Ischemia Monitoring
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Abstract—The purpose of this paper is to analyze and detect
changes in body position (BPC) during electrocardiogram (ECG)
recording. These changes are often manifested as shifts in the
electrical axis and may be misclassified as ischemic changes during
ambulatory monitoring. We investigate two ECG signal processing
methods for detecting BPCs. Different schemes for feature ex-
traction are used (spatial and scalar), while preprocessing, trend
postprocessing and detection are identical. The spatial approach
is based on VCG loop rotation angles and the scalar approach is
based on the Karhunen–Loève transform (KLT) coefficients. The
methods are evaluated on two different databases: a database with
annotated BPCs and the STAFF III database with recordings from
rest and during angioplasty-induced ischemia but not including
BPCs. The angle-based detector results in performance values
of detection probability = 95%, false alarm probability

= 3% in the BPC database and false alarm rate in the
STAFF III database in control ECGs during rest ( ) = 2 h 1

(episodes per hour) and in ischemia recordings during angioplasty
( ) = 7 h 1, whereas the KLT-based detector produces

values of = 89%, = 3%, ( ) = 4 h 1, and
( ) = 11 h 1, respectively. Including information on noise

level in the detection process to reduce the number of false alarms,
performance values of 90%, 1%, ( ) 1 h 1

and ( ) 2 h 1 are obtained with both methods. It is
concluded that reliable detection of BPCs may be achieved using
the ECG signal and should work in parallel to ischemia detectors.

Index Terms—Alarms, body position changes, detection, ECG,
ischemia.

I. INTRODUCTION

M YOCARDIAL ischemia is usually detected in the sur-
face electrocardiogram (ECG) from the repolarization

period (ST-T complex). Ischemia may be detected from ab-
normal amplitudes change measured from the ST-T complex.
However, changes in the ST segment or ST-T complex are not
always due to ischemia, but to other factors as body position
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Fig. 1. Beat morphologies for three positions recorded in lead X from the same
individual. The differences found in ST segment level and T wave amplitude
between right and left lateral positions are of 83�V and 405�V, respectively.

changes (BPC), drug effects, resting potential conditions, etc.
BPCs effects on the ECG are manifested as transient changes
and also as ECG waveform variations that remain while the
new body position is maintained [1], [2]. It is well-known that
BPCs are often misclassified by monitoring equipment used in
the intensive care unit resulting in false ischemia alarms. At
present, software is rarely included in such devices to cancel
the false alarms or, at least, to inform the physician that the
observed event is likely due to a BPC and not related to an
ischemic episode. The large morphologic changes caused by
changes from one body position to another are shown in Fig. 1.
In this example, the differences in ST segment level and T wave
amplitude between right and left lateral positions, are of 83V
and 405 V, respectively.

Previous work concerning BPC is descriptive in nature
and presents results on how various ECG measurements are
affected by changes in body position; methodological devel-
opment regarding the BPC detection problem is lacking. In
[1], the standard 12-lead ECG and the derived 12-lead ECG
(Dower’s EASI lead system) are compared studying QRS and
ST variations for different positional changes. It was concluded
that such changes affect all ECG measurements although those
related to QRS morphology are more sensitive. Further, the
12-lead system seems to be more sensitive to changes than
the derived lead system is. Changes in QRS waveform and
ST-T complex during BPCs were also studied in [2], where
it was found that the effects on the ST segment were usually
small. A recent paper deals with BPCs in relation to ischemia
monitoring [3]. In that paper, alterations are studied in terms of
vector magnitude differences of the QRS complex and changes
of the ST-T complex. The results show that both measures
are rather sensitive to BPCs, especially to changes to the left
lateral position. The conclusion is that automated monitoring
algorithms have a limited value as long as these are not used
in combination with a BPC detector. In [4], ECG variations
caused by BPCs and electrode placement during ambulatory
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TABLE I
VARIATION IN ST LEVEL (� � � IN �V) FOR THEPRECORDIAL LEADS INDUCED BY BODY POSITION CHANGES. THE LARGESTCHANGE FOUND

(AND THE CORRESPONDINGLEAD) FOR EACH KIND OF POSITIONAL CHANGE IS ALSO SHOWN (MAX)

TABLE II
VARIATION IN T WAVE AMPLITUDE (�� � IN �V) FOR THEPRECORDIAL LEADS INDUCED BY BODY POSITION CHANGES. THE LARGESTCHANGE FOUND

(AND THE CORRESPONDINGLEAD) FOR EACH KIND OF POSITIONAL CHANGE IS ALSO SHOWN (MAX)

monitoring were studied. They analyzed these sources of ECG
variations to correct them by reconstructing the signals.

One of the first papers published on the BPC detection
problem was by Jager and coworkers who explored the use of
Karhunen–Loève transform (KLT) for detection of ischemic
ST changes and nonischemic episodes due to, e.g., body
position changes [5]. They developed a recognition algorithm
that studied the feature vectors evolution in the KLT space for
both the ST segment and the QRS complex. Their hypothesis
was that during axis shifts the QRS parameters change rapidly
(generally over a period of half a minute) generating more than
one cluster but not during ST episodes in which case the QRS
complexes do not show significant changes. Analysing the
pattern of QRS and ST parameters changes, they were able to
distinguish between ischemic and nonischemic episodes in the
European ST-T Database [6].

In this paper, we compare two different approaches to the
BPC detection problem (spatial approach (VCG) and scalar
approach (KLT)). Both methods are tested on two different
databases, described in Section II. The two methods, the
preprocessing and the detection scheme are explained in
Section III. Finally, the results and discussion are presented in
Section IV and Section V, respectively.

II. REFERENCEMATERIAL

The evaluation of a BPC detector needs to be done with ref-
erence to different aspects since it will work in parallel to an
ischemia detector. First, it is necessary to evaluate the ability of
the system to detect BPCs and second, whether or not it con-
fuses BPCs with ischemic episodes. Therefore, two databases
were considered with standard 12-lead ECGs recorded with a
sampling rate of 1 kHz and an amplitude resolution of 0.6V
(equipment by Siemens-Elema AB, Solna, Sweden).

A. Healthy Individuals Doing BPCs—BPC Database

The BPC database was recorded following the next protocol:
supine—right side—supine—left side and so on. The complete
sequence was repeated five times with a duration of 1 min per
BPC in order to give more reliable statistical results. The interval

between the changes (1 min) was chosen in order to allow mus-
cular activity and other artifacts to decay before the next BPC
was initiated. Twenty healthy individuals were included in the
BPC database (11 males/9 females, 329 years old).

In order to establish the characteristics of the BPC database,
a summary of its properties is presented in Tables I and II. The
influence of BPCs on the cardiac cycle was analyzed, looking
at changes induced in level and T wave amplitude, which
may yield false ischemia detections. The level and T wave
amplitude were estimated with reference to the isoelectric level,
during the time intervals without BPCs (excluding beats from 5
s before each BPC until 10 s after). One average was obtained
for each resting phase. Then all BPCs were characterized lead-
wise by the difference between two consecutive mean values of

level and T wave amplitude. In Tables I and II, the main
results of variations (average values for all the BPCs in all the
patients), classified by the different pattern of changes ( :
supine to right side, : left side to supine and so on), are
presented, showing a significant increase/decrease oflevel
and T wave amplitude values provoked by the BPCs. One result
of this study was that BPCs were usually larger when related to
the left-lying body position, in accordance with [3]. Both
level and T wave amplitude were affected by BPCs with large
variance between individuals. It was possible to find level
deviations of up to 180V and of more than 600V for T wave
amplitude.

This preliminary analysis shows clearly that BPCs can in-
duce significant changes, sometimes of the same order as the
threshold in an ischemia detection system (ischemic episodes
are commonly defined as deviations of more than 100V for
the ST segment level or 200V for the T wave amplitude [6]).
Using these thresholds in an ischemia detector, 43% of the an-
notated BPCs would be considered as ischemic changes mostly
due to erroneous detections derived from the T wave.

B. Patients Undergoing PTCA—Staff III Database

The second database contains severe, induced ischemic
events. The study group consisted of 83 patients (55 males/28
females, 61 12 years old) receiving electivepercutaneous
transluminal coronary angioplasty(PTCA), i.e., a balloon was
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Fig. 2. General scheme for BPC detection. One of the two methods (either VCG angle or KLT series) can be selected.

inflated, blocking the blood flow in one of the major coronary
arteries. A control ECG recorded during rest prior to the
procedure and the ECG recorded during angioplasty (from the
beginning of the recording until PTCA ended) were considered
for each patient. In this paper, the recordings obtained during
control and angioplasty are denoted with subscriptsand
, respectively. A more extensive description of the STAFF

III database is found in [7], [8]. It is assumed that no BPCs
occurred during the recording of this data (highly unlikely that
any of the patients moved during surgery).

III. M ETHODS

The BPC detector mainly consists of feature extraction fol-
lowed by decision making. The following two different feature
extraction methods have been compared:

• a spatial approach based on loop rotation angles;
• a scalar approach based on the KLT coefficients.

Both approaches make use of identical preprocessing and
postprocessing and detection scheme, see Fig. 2. In parallel to
the above algorithms, an extra stage including information on
noise level in the detection process to reduce the number of false
alarms was added.

A. Preprocessing

The preprocessing of the recorded ECG signal consists of the
following stages: baseline filtering, synthesis of vectorcardio-
graphic (VCG) leads, QRS detection and rejection of beats with
low signal-to-noise ratio (SNR). The synthesized VCG signals
are obtained from the standard 12-lead ECG using the inverse
Dower matrix [9]. The baseline wander is removed by using
a time varying linear high-pass filter (third-order Butterworth)
with a normalized cutoff frequency depending on the heart rate
beat frequency [10]. The QRS detection is based on an envelope
signal of the ECG and the decision rule is applied to it by using
a multistage process [11].

Beats with poor signal quality, e.g., due to myoelectric noise,
are rejected since these otherwise would result in unrealistic
trend fluctuations. The problem of removing low SNR beats is
complicated by the fact that different body positions as well as

different recordings may have different SNR levels. In order to
solve that, an exponentially updated SNR threshold is used so
that it is possible to eliminate noisy beats for a shorter period of
time and to maintain the ability to detect body position changes
at low SNRs. Consecutive beats with baseline isoelectric levels
differing in more than 0.6 mV are also discarded.

B. Spatial Approach Based on VCG Angle Series

The method is based on the observation that a BPC causes a
change in the position of the heart and, as a result, the ECG/VCG
morphology is altered. One way to quantify such morphologic
alterations is to estimate the relative rotation angles of succes-
sive VCG loops and then to search for angle signatures which
are characteristic of BPCs. The maximum likelihood approach
to the estimation of rotation angles, recently presented in [12], is
briefly summarized below. The estimation is based on a model
in which the observed VCG loop for a beat,, is related through
rotation, defined by the matrix , plus alignment handled by the
shift matrix and scaling by the amplitude factor, to a “ref-
erence” loop and corrupted by white, zero-mean Gaussian
noise

(1)

The loops and are represented by matrices, defined by the
three leads and and the number of samples embracing
the QRS complex. The rotation matrixis a 3 3 orthonormal
matrix. The problem of selecting the reference loop is ad-
dressed in [12].

The maximum likelihood criterion for estimating leads
to that the Frobenius norm between the original and estimated
loops should be minimized with respect to. From the re-
sulting estimate , the rotation angles defining the three dif-
ferent planar rotations are calculated by

(2)

(3)

(4)
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Fig. 3. Example of rotation angle estimates. The instants of the BPCs are denoted with “4.”

where denotes the element of theth row and th column
of . The estimation procedure is then repeated for each new
successive loop of the VCG recording.

An example of the three angle series and is pre-
sented in Fig. 3 for a subject included in the BPC database. In
this example, changes in the angle series occur every minute
corresponding to the time instants of a BPC.

C. Scalar Approach Based on Karhunen–Loève Coefficients

The KLT technique applied to different waves of the ECG
signal provides a useful tool to estimate their morphologic
changes. The KLT is an orthogonal linear transform, optimal
in the sense that it concentrates the signal information in a few
coefficients [13]. The dynamic beat-to-beat evolution of the
signal can be characterized by the coefficient time series. In this
paper, the KLT has been applied to the QRS complex and the
entire ST-T complex in order to analyze how BPCs affect the
ECG signal. The details on how this transform was developed
and applied to the ECG segments are described in [14], [15].

In this paper, both the QRS and the ST-T complexes are con-
sidered for the detection of body position changes. A combined
distance function of the corresponding KLT time series for QRS
and ST-T is defined as

(5)

where , represent the weights for the functions and
, are the distance functions for each complex

at time . These functions are simply the distance series be-
tween each KLT coefficients vector (in which only the first four
components are considered) and a mean reference value () es-
timated from the onset of the recording

(6)

with being the th-order KLT coefficient at estimated
for th lead beat. The coefficient series is estimated using
adaptive filtering to remove noise uncorrelated to the signal,
thus improving the KLT estimation [14]. A compromise be-
tween noise reduction and convergence time is reached using
a step-sizeparameter for the LMS algorithm of , that
yields a SNR improvement in the series of more than 6 dB, with
a convergence time of one beat [14].

The function reflects, in a combined way, changes in
QRS and ST-T complexes. Although the largest changes during
BPCs are usually related to the QRS complex it is also desirable
to keep the information of possible changes on the ST-T com-
plex; therefore, values of and were ex-
perimentally selected as weights. An example of the first KLT
coefficient series for both QRS and ST-T complexes in lead
( ) is shown in Fig. 4 (corresponding to the same patient as
in Fig. 3). The corresponding KLT distance trend is represented
in Fig. 5.

D. Postprocessing

Once the rotation angles and KLT trends are obtained, post-
processing is applied to reject outlier values and to resample
them at equidistant sample times. A simple but effective method
for outlier rejection is themedian absolute deviation(MAD)
method [16]. The idea of this method is to focus on the median
and the median absolute deviation instead of the more com-
monly used mean and standard deviation. This method is ap-
plied to the trends to avoid false BPC detections. An example of
the rejection method applied to the KLT distance trend is shown
in Fig. 5. The outliers are likely to produce false BPC detections,
however, the rejection method eliminates this risk. The outliers
are usually due to a sudden drop in SNR.

Finally, the trends are resampled to an even sampling rate.
The procedure of resampling is based on linear interpolation.
This method is chosen since the introduced delay is minimal
and that it is a computationally fast method. The sampling rate
after resampling is Hz.
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Fig. 4. Example of KLT coefficients for QRS and ST-T complexes (expressed in arbitrary units). The instants of the BPCs are denoted with “4”.

Fig. 5. An example of outlier rejection based on median absolute deviation applied to the KLT distance series: Original trend (thin line) and filteredtrend (thick
line).

E. Bayesian Detection of BPCs

A simple statistical model of the basic trend characteristics
is considered with the aim to determine if a BPC has oc-

curred (hypothesis ), or if only noise is present (hypothesis
); this aim is later extended to also handle the detection of

multiple BPCs. The model was developed without specific ref-
erence to the origin of the time series and is applied equally to
trends of KLT coefficients and rotation angles. The onset of the
observation interval occurs at the sliding time instant . A
BPC is characterized by the signature which is disturbed
by additive noise with mean value

(7)

where and
, and are 3 1 vectors

representing information related to each of the orthogonal
leads. For simplicity, it is assumed that is modeled by
a step change,

otherwise

(8)

where length of is defined by the even-valued integer.
The length is chosen such that is completely contained
in the observation interval. The discrete-valued occurrence time

is assumed to have a uniforma priori probability density func-
tion (pdf) such that

otherwise.
(9)

A BPC is manifested in as a transition from a lower to a
higher level with equal probability as a transition from a higher
to a lower level. Therefore, the amplitudeis in each lead char-
acterized by a “two-point”a priori pdf

(10)

where is a positive-valued constant representing the magni-
tude of the BPC. Hence, the magnitude of a transition in theth
lead has a fixed size equal to 2. The eight possible combi-
nations of the amplitudes that can occur are denoted by the
set . The additive noise is assumed to be white and
Gaussian with mean and variance . All random variables
in , and are assumed to be mutually independent.

A Bayesian approach is considered for developing a BPC de-
tector and takes its starting point in the binary detection problem
with random, unwanted parameters, i.e.,and [17], [18].
The two hypotheses are characterized by the pdfs

, describing that a BPC has occurred and
, describing that nothing has changed; the matrix

contains all observations of the
three leads. The Bayesian detector requires that the likelihood
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ratio is tested against athresholdsuch that the hypothesis is
decided if

def

threshold

(11)

where the two sums are introduced due to that the random
variables and are discrete-valued. Thethresholdis usually
treated as a design parameter and selected such that a certain
performance is achieved, e.g., in terms of false alarm rate. The
detector given in (11) is rather demanding computationally
and, therefore, a simplified detector based on the Taylor series
expansion is derived (the derivation is presented in [19]). As-
suming that the three leads have identical statistical properties,
the simplified detector is defined by the sum of the energy of
the matched filter output of all leads and yields
the following test against a thresholdrelated to the previous
threshold[19]

(12)

In order to accomplish detection of multiple BPCs, the de-
tection test is repeated for successive values ofuntil the en-
tire signal has been processed. Hence, the detector performs a
“sliding” hypothesis test to find out whether a BPC has occurred
or not.

Two other modifications are introduced in the detector struc-
ture in order to improve performance. First, a nonlinearity is
inserted after the matched filter in order to zero out any sample
values below a certain threshold; samples exceeding are
unaffected. The purpose of this nonlinearity is to reduce the
number of false detections due to noise. Second, a “refractory
period” disqualifies detections made within a small time interval
following the most recent detection; the time period is chosen
to 10 s. The inclusion of such a period reduces the risk that the
onset and end of a single BPC is detected as two separate events.

F. Noise Stage

An extra postprocessing stage was considered after analysing
the results, which can be added to the detection scheme (Fig. 2).
The idea consists of making use of the information contained in
the noisy beats which are rejected from the study. From the anal-
ysis of BPC recordings, it was found that one may generalize
that a BPC episode implies a few noisy beats around its posi-
tion (a noisy beat is a low SNR beat or a beat with high baseline
wandering as defined in the preprocessing). We use the reverse
(negative) implication to reject potential false BPC detections
in the next way: no noisy beats found imply no BPC present,
or at least, no need to detect a BPC (because the BPC would
probably induce small ECG changes). To apply this rule it is re-
quired that a potential BPC at the Bayesian detector output must
present a minimum number of noisy beats in the neighborhood
(five noisy beats present in the surrounding 20 beats interval),
to be considered as a BPC event.

TABLE III
TIME DELAYS ASSOCIATED WITH DIFFERENT

PROCESSINGSTEPS OF THEBPC DETECTOR

G. Detection Delay

The delay introduced by the different steps of the detector
constitutes an important factor to know, in order to make the
BPC detector to work properly together with the ischemia de-
tector. A delay of 10–15 s may be an acceptable limit value
in the BPC detector in order to not reduce the performance of
the ischemia detector. The different parts of the algorithm in-
troduce various delays, see Table III. The delay caused by the
loop alignment is negligible since each estimate is calculated on
a beat-by-beat basis. The delay introduced in the KLT method
is less than 1 s (considering the convergence time of the adap-
tive algorithm). The SNR rejection operates on a beat series and
does not introduce any delay. For the MAD rejection method it is
necessary to introduce a delay to calculate the median absolute
deviation (approximately of 5 s). Resampling of the trends is
done with a linear interpolation filter which introduces a negli-
gible delay. The matched filter in the detector introduces a delay
of maximum 5 s. However, the matched filter and the remaining
parts of the detector work in parallel, causing the detector delay
to vary from 0 to 7.5 s, depending on how large response from
the trends the matched filter yields.

IV. RESULTS

Detector performance is assessed by measures which are
database specific. Due to the differing characteristics of the two
databases, different performance measures are considered. For
the BPC database, the classical detection measures used e.g.,
for assessing communication systems,detection probability,

and false alarm probability, , are considered1 . These
measures can be defined in terms of the number oftrue detec-
tions , false alarms , andmissed detections ( )

(13)

(14)

A different measure is used when evaluating the STAFF III
database. Since this database does not contain any BPCs, the
information is described by thefalse alarm rate, , which is
presented as the number of false BPCs per hour.

The performances of the two methods (without and with ap-
plication of the extra noise stage) are shown in Table IV. The
VCG angles presented slightly higher performance results than

1The notation in (13) and (14) is essentially the same as the ones used in some
other studies i.e.,sensitivity, S andpositive predictivity, P [20]. The relation
between the two sets isP = S andP = 1� P , respectively.
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TABLE IV
PERFORMANCESTATISTICS (�� �) FOR THEBPC DETECTORS ON THEBPCAND STAFF III DATABASES

Fig. 6. ROC graphs for the VCG angle series (a) and KLT coefficients
(b) varying� with a fixed� amplitude, on the BPC database.

did the KLT distance, especially regarding detection probability
on the BPC database and false alarm rate on the STAFF III data-
base. When the extra noise stage is applied both methods reach
similar performances. In general, for both methods (in the two
presented versions, i.e., considering the extra noise stage or not),

values are small ( 3 ). The obtained values are also
quite high, ranging from 89% to 95%. Finally, values range
from 2 to h and from 1 to h when the extra noise
stage is considered. The false alarm rate in angioplasty-induced
ischemia recordings, , is approximately three times that
of the control recordings, . The standard deviation of the
methods is relatively large between subjects as it can be deduced
from the results.

The receiver operating characteristics(ROC) constitute a
common approach to present detector performance. The ROC
display the relationship between and for different
values of a certain detector parameter. The ROC of the BPC
database were calculated choosing as parameter for evaluation
that judged as the most critical for performance:threshold.
In Fig. 6(a) and (b), the ROC curves for the VCG angles series
and KLT trends, respectively, are plotted for different values
of , starting with the largest parameter value in the lower left
corner. These curves were calculated for both detectors without
the extra noise stage. Similar curves are obtained when this
stage is applied. In order to investigate the STAFF III database
(control and angioplasty recordings), theparameter was again
considered and the results are presented in terms of false alarm
rate, , in Fig. 7. It can be seen that the parameter is
less sensitive to variations in the detector parameter in control
recordings ( ) than in angioplasty recordings ( ).

V. DISCUSSION ANDCONCLUSION

Several parameters control the performance of the proposed
methods to detect BPCs. A tradeoff among, , and

needs to be achieved. The parameter reflects true BPCs
missed by the BPC detector and, therefore, how many false is-
chemic alarms will be activated by the BPCs during monitoring.
It is also important to minimize in order to avoid cancellation
of events during monitoring due to sources different from BPCs.
Finally, the parameter needs to be as low as possible (espe-
cially in angioplasty recordings, ) because an ischemic
event confused as a BPC would be ignored and the ischemia
alarm would be cancelled. From the perspective of signal pro-
cessing and BPC detection the goal is to get highand low

values. However, from the clinical perspective, it should be
more important to decrease (mainly ), thus avoiding
that a true ischemic episode could be cancelled. Therefore, fu-
ture research should be addressed mainly on these aspects to
tune the parameters detector.

Although the loop alignment performed slightly better on the
databases, the difference is so marginal that it can be concluded
that the two, distinctly different, approaches lead to the same
result. The KLT method includes more information from the
ECG (considering both QRS and ST-T complexes). However,
in practice, results show that maybe KLT series are affected in a
longer time period by each BPC as a consequence of using both
complexes and the adaptive estimation. Introducing in parallel
the noise criterion stage both methods work essentially equal.

One aspect that should not be forgotten is that in the STAFF
III database recordings the induced ischemia comes from a
sudden occlusion and, therefore, changes take place in a shorter
period of time than during a common transient ischemic event
and they probably also have greater ischemic magnitude.
This means that the time and amplitude signature for these
ischemic events is more likely to that of BPCs and thus more
difficult to distinguish. It is also noticeable that each STAFF
III angioplasty recording ( recordings) includes one ischemic
episode which lasts around 5 min, thus leading in a STAFF III
recording to 12 events per hour, a rate that is much higher than
that usually expected in ambulatory recordings. This reasoning
yields that results during ambulatory ischemia monitoring
(not PTCA ECGs) would probably be lower than the ones
obtained in this work, which can be relatively high (consider
that , with 12 events per hour, means that one-sixth
of the PTCA ischemic episodes are misclassified as BPCs).

Our group has been previously involved in the study of
ischemia detectors with the aim to design detection schemes
which consider global or morphology changes on the ECG
complexes under different approaches [21], [22]. We tested
the proposed ischemia detector based on the root mean square
(RMS) difference series of ECG intervals [22] on the BPC
database. The false detections for ST-T complex obtained with
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Fig. 7. VCG angle series (a) and KLT trends (b) performance on the STAFF III database:R (a) (solid line) andR (c) (dashed line) are plotted varying�.

this ischemia detector are less than 2% of total BPCs, thus
making it less necessary the use of a BPC detector working in
parallel with it. However, by using classical ischemia detectors
the false alarm rate is much higher (43%) as it has been shown
in the description of the BPC database and the application of
a BPC detector would be very useful. A third approach to the
BPC detection problem could be to use the RMS series as input
information to characterize BPCs (in the same way as KLT or
VCG angle trends). Thus, the same scheme could be used both
for ischemia and BPC detection. However the results obtained
are a bit less satisfactory than with the two presented methods:

, , h , and h
(obtained using the extra noise stage). An explanation to the
fact that KLT trends obtain better results than RMS series
in BPC detection but worse in ischemia detection may come
from the SNR trend values. In general, KLT trends are much
cleaner than RMS series (first KLT coefficients recover main
signal features filtering high frequency noise content) and RMS
series, especially during a BPC, present a high noise content.
Then many beats can be rejected from the RMS series, making
it difficult to detect the corresponding BPC.

An interesting extension of this work would be the test of the
proposed methods in a database simultaneously containing both
ischemia events and BPCs. The collection of such a database is
however associated with considerable efforts and costs.
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